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ABSTRACT

This survey paper examines the recent advancements in Al agent implementations, with a focus on
their ability to achieve complex goals that require enhanced reasoning, planning, and tool execution
capabilities. The primary objectives of this work are to a) communicate the current capabilities and
limitations of existing Al agent implementations, b) share insights gained from our observations
of these systems in action, and c) suggest important considerations for future developments in Al
agent design. We achieve this by providing overviews of single-agent and multi-agent architectures,
identifying key patterns and divergences in design choices, and evaluating their overall impact on
accomplishing a provided goal. Our contribution outlines key themes when selecting an agentic
architecture, the impact of leadership on agent systems, agent communication styles, and key phases
for planning, execution, and reflection that enable robust Al agent systems.

Keywords Al Agent - Agent Architecture - Al Reasoning - Planning - Tool Calling - Single Agent - Multi Agent -
Agent Survey - LLM Agent - Autonomous Agent
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Single Agent Multi Agent

Architecture Architecture
with n =1 agents with n >1 agents
Vertical Architecture Horizontal Architecture
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3: All agents have agent personas where they are assigned a role, understand the purpose of their
N tools, and how to leverage them effectively

“® . Most agent implementations have reasoning, planning, and tool calling abilities x
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Source: Neudesic, an IBM Company

Figure 1: A visualization of single and multi-agent architectures with their underlying features and abilities
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Graph-enhanced Large Language Models in Asynchronous Plan Reasoning

Fangru Lin! Emanuele La Malfa'!? Valentin Hofmann ' >4 Elle Michelle Yang !
Anthony G. Cohn?’ Janet B. Pierrehumbert '

AbStraCt To Make Calzones, here are the steps and the times needed for each step.
: : - Step 1. Preheat the oven to 425 degrees. (10 min)
Planning is a fundamental property of human in- Step 2. Roll out the dough. (10 min)
telligence. Reasoning about asynchronous plans Step 3. Add the filling. (15 min)
. . . . . . Step 4. Fold and pinch the dough. (5 min)
is challenging since it requires sequential and par- Step 5. Bake the calzoncs, (25 min)
allel planning to optimize time costs. Can large
language models (LLLLMs) succeed at this task? Enrallel Asynchronous
Here, we present the first large-scale study in- A0 985
vestigating this question. We find that a repre- sl Q Ciiia
sentative set of closed and open-source LLMs, 5
including GPT-4 and LLaMA-2, behave poorly
when not supplied with illustrations about the X
task-solving process in our benchmark Asyn- Sequential
cHow. We propose a novel techn'lque called Plgn S8 _. _. Q—’ 555
Like a Graph (PLaG) that combines graphs with won B2 N

natural language prompts and achieves state-of -
the-art results. We show that although PLaG
can boost model performance, LLMs still suf- 128k x
fer from drastic degradation when task complex-
ity increases, highlighting the limits of utiliz-
ing LLMs for simulating digital devices. We Figure 1. A planning task (top) can be executed sequentially, in
see our study as an exciting step towards using parallel, or asynchronously. Blue arrows denote action ordering
LLM:s as efficient autonomous agents. Our code constraints. Although complete parallelism is logically the most
and data are available at https: //github.com/ time-efficient strategy, it results in invalid reasoning steps (e.g-
. ‘Baking’ cannot happen at the same time with ‘Rolling the
fangru-lin/graph-1lm-asynchow-plan. dough’); at the same time, sequentially executing each task neg-
atively affects efficiency. Given infinite resources, an optimal
(asynchronous) plan should parallelize actions wherever possible.

2402.02805v2 [cs.Al] 3 Jun 2024

1. Introduction

7.



To Make Calzones, here are the steps and the times needed for each step.
Step 1. Preheat the oven to 425 degrees. (10 min)
Task description These ordering constraints need to be obeyed when executing above steps:
Step 1 must precede step 5.
[...]

Standard 10 Prompt PLaG - BaG PLaG - explicit graph

Task description

Here is the adjacency list representation of the step ordering
constraints:

Task description LJ[llEI'i[.]g c_unstr'flin‘ls, and also construct a dirctiri'mary to I?P{S“m time (1: 5], 2: [31, 3: [4], 4: [5], 5: ’END’], "END": [], *START":
Jaskcescription needed for each step. Use the graph and dictionary to calculate the 1,21}

shortest possible time needed for the task.

Task description

Let’s construct a graph with the nodes and edges first to represent step

Time for each step can be represented as a dictionary:
{1: 10 min’, 2: ’10 min’, 3: *15 min’, 4:'5 min’, 5: °25
min’}

v v v

Assume that you need to execute all the steps to complete the task and that infinite resources are available. What is the shortest possible
time to Make Calzones?

Figure 2. Comparing standard Input-Output (IO) prompting with our method (PLaG). Here, we illustrate PLaG (explicit graph) with an
adjacency list, but it can be of any graph type in practice. The standard IO method is similarly deployed in zero-shot, zero-shot + CoT,
k-shot, k-shot + CoT in this paper. Please refer to Appendix A.8 for more details.
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GPT-4: k-shot+CoT
GPT-4: zero-shot+CoT
GPT-4: k-shot

GPT-4: zero-shot
GPT-3.5: k-shot+CoT
GPT-3.5: zero-shot+CoT
GPT-3.5: k-shot
GPT-3.5: zero-shot

GPT-4: k-shot+CoT
GPT-4: PLaG (BaG)
GPT-3.5: k-shot+CoT
GPT-3.5: PLaG (BaG)

Figure 3. GPT-3.5 and GPT-4 accuracy as a function of asyn-
chronous planning task complexity |V| + |E| (see Section 2),
after binning results by width of 2. The upper figure plots the per-
formance of methods without PLaG (our method), and the lower
plot displays the best method with/without PLaG.
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Table 2. Model accuracy in different settings on the AsyncHow benchmark. Model performances without our method are in plain
background, while those with our method are in blue background. We mark the best performance per model in bold. Following Dror et al.
(2018), we use McNemar’s tests (McNemar, 1947) to obtain p-values and Holm-Bonferroni method (Holm, 1979) to correct them for
each evaluation to test the statistical significance of performance difference between experiment with and without our proposed method.
We denote with § when the performances with PLaG are significantly better (p < 0.05) than the best result without.

Without PLaG With PLaG
Model zero-shot  zero-shot + CoT  k-shot  k-shot + CoT  PLaG (explicit graph) PLaG (BaG)
GPT-4 0.130 0.129 0.107 0.657 0.730f 0.777°
GPT-3.5 0.199 0.224 0.248 0.226 0.290f 0.3557
Command 0.078 0.015 0.050 0.078 0.100 0.050
LLaMA-2-70B-chat 0.039 0.038 0.053 0.076 0.101f 0.069

Mistral-7B-Instruct 0.078 0.070 0.098 0.149 0.161 0.146
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7. Conclusion

In this paper, we automatically generate a benchmark, Asyn-
cHow, and assess LLMs for their performance in asyn-
chronous plan reasoning. We find that if not provided with a
detailed illustration of the task solution process, all models
behave extremely poorly in our task. We propose a for-
malism to classify naturalistic asynchronous planning tasks,
which successfully predicts LLMs’ performance patterns.
We propose PLaG, a method that consistently boosts SOTA
model performance across all task complexity levels off
the shelf. Despite this, we find that model performance
still drastically downgrades with increasing task complexity,
which calls into question using them as digital devices or
generally intelligent agents.
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Discussion and Observation
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